马星晨 助理教授硕导 邮箱:maxingchen@tongji.edu.cn 联系方式: 四平路1239号物理馆602C |
2015/09-2020/09 新葡的京集团350vip8888官网,新葡的京集团350vip8888官网,凝聚态物理专业,博士学位(硕博连读),导师:张晓青教授
2011/09 -2015/06 苏州科技大学, 数理学院,物理学(师范)专业,学士学位2024/01-至今 新葡的京集团350vip8888官网,助理教授
2020/10 -2024/1 新葡的京集团350vip8888官网航空航天与力学学院(力学流动站),博士后,合作导师:戴瑛教授
主要从事驻极体相关功能材料基础和应用研究,并在柔性压电功能膜的结构设计原理、物理机制、制备技术与性能调控及其在身体运动状态捕捉、健康监测、智能康复、人机界面等前沿领域中的应用方面取得了一系列富有特色的成果,具体包含三个方面:1)高性能柔性压电敏感材料设计新工艺,2)多场景生物电子原型器件开发新技术,3)人体运动传感智能系统搭建。以第一/共同第一作者在Nano Energy、ACS Applied Materials & Interfaces、Advanced Electronic Materials、Advanced Materials Technologies、Cell Reports Physical Science、Sensors and Actuators A: Physical、Smart Materials and Structures等高水平期刊发表论文,已发表SCI论文30余篇(第一、共同第一及通讯作者20篇,与德国科学院院士、驻极体和MEMS麦克风发明人Gerhard Sessler教授合作发表论文10篇),申请/授权国家发明专利14项。主持国自然青年科学基金、国家重点研发计划重点专项子课题及“双一流”专项-国际合作交流子课题各1 项,参与国家自然科学基金国际(地区)合作与交流项目和面上项目等。2021年入选上海市“超级博士后”激励计划,目前为中国物理学会静电专委会青年委员成员及IEEE会员,承担15 个重要国际学术期刊的审稿工作。参加国内外学术会议17次,作为会议秘书参与主办本领域顶级国际学术会议(第18届ISE会议)及第二届全国驻极体理论及应用研讨会,作为负责人举办2021年智能材料与器件研究生论坛及2024年同济-德国达姆施塔特工业大学功能材料研究生国际学术论坛。
上海展团2023年度发明创业铜奖(2023)
“天骄湾杯”新葡的京集团350vip8888官网医学院创新挑战赛铜奖 (2022)
新葡的京集团350vip8888官网光华奖学金(博士生)(2018)
新葡的京集团350vip8888官网优秀博士新生奖学金(2017)
新葡的京集团350vip8888官网光华奖学金(硕士生)(2016)
创青春全国大学生创业大赛新葡的京集团350vip8888官网选拔赛铜奖(2016)
上海市“超级博士后”激励计划(2021)
新葡的京集团350vip8888官网优秀学生(2017&2019)
主要论著 (#同等贡献, *通讯作者)
1. X. Ma, Y. Qi, Y. Niu, Q. Zhang, X. Xiang, K. Zhang, P. He, Y. Dai*, W. Niu*, X. Zhang*, “Highly sensitive, ultra-reliable flexible piezoelectret sensor for non-contact sitting motion tracking and physiological signal monitoring,” Nano Energy, vol. 111, pp. 108424, 2023.
2. X. Ma#, X. Chen#, X. Xiang, F. Zhang, Y. Zhao, F. Wang, X. Mu*, Y. Dai*, P. He, X. Zhang*, “Self-Powered Multifunctional Body Motion Detectors Based on Highly Compressible and Stretchable Ferroelectrets with an Air-Filled Parallel-Tunnel Structure,” Nano Energy, vol. 103, pp. 107729, 2022.
3. X. Zhang, P. Pondrom, G. M. Sessler*, and X. Ma, “Ferroelectret nanogenerator with large transverse piezoelectric activity,” Nano Energy, vol. 50, pp. 52-61, 2018.
4. X. Ma#, Q. Hu#, L. Zhou, X. Xiang, Y. Qin, K. Zhang, P. He, Y. Dai*, W. Niu*, X. Zhang*, “Flexible piezoelectret film sensor for noncontact mechanical signal capture by multiple transmission media”, Nano Research, vol. 17, no. 8, pp. 7643-7657, 2024.
5. X. Ma, C. Song, F. Zhang, Y. Dai*, P. He, X. Zhang*, “Soft, Multifunctional, Robust Film Sensor Using Ferroelectret with Significant Longitudinal and Transverse Piezoelectric Activity for Biomechanical Monitoring,” ACS Applied Materials & Interfaces, vol. 14, pp. 51291-51300, 2022.
6. Q. Hu, L. Zhou, X. Ma*, and X. Zhang*, “Biodegradable, Bi-Functional Electro-Acoustic Transducers Based on Cellular Polylactic Acid Ferroelectrets for Sustainable Flexible Electronics,” ACS Applied Materials & Interfaces, vol. 16, no. 3, pp. 3876–3887, 2024.
7. X. Xiang, K. Zhang, Y. Qin, X. Ma, Y. Dai*, X. Zhang*, W. Niu*, Pengfei He, “Smart Cushions with Machine Learning-Enhanced Force Sensors for Pressure Injury Risk Assessment”, ACS Applied Materials & Interfaces, vol. 16, pp. 38466−38477, 2024.
8. X. Ma, S. Zhukov, H. von Seggern, G. M. Sessler, O. Ben Dali, M. Kupnik, Y. Dai*, P. He, and X. Zhang*, “Biodegradable and bioabsorbable polylactic acid ferroelectrets with prominent piezoelectric activity,” Advanced Electronic Materials, no. 2201070, 2023.
9. X. Xiang#, X. Ma#, L. Zhou, G. M. Sessler*, H. von Seggern, O. Ben Dali, M. Kupnik, P. He, Y. Dai*, and X. Zhang*, “Threadlike Piezoelectric Sensors Based on Ferroelectrets and Their Application in Washable and Breathable Smart Clothing,” Advanced Materials Technologies, no. 2202130, 2023.
10. X. Chen#, X. Ma#, W. Ren#, L. Gao, S. Lu, D. Tong, F. Wang, Y. Chen, Y. Huang, H. He, B. Tang, J. Zhang, X. Zhang*, X. Mu*, and Y. Yang*, “A Triboelectric Nanogenerator Exploiting the Bernoulli Effect for Scavenging Wind Energy,” Cell Reports Physical Science, vol. 1, pp. 100207, 2020.
11. S. Zhukov*, X. Ma, H. von Seggern, G. M. Sessler, O. Ben Dali, M. Kupnik, and X. Zhang*, “Biodegradable cellular polylactic acid ferroelectrets with strong longitudinal and transverse piezoelectricity,” Applied Physics Letters, vol. 117, no. 11, pp. 112901, 2020.
12. X. Ma, Q. Hu, Y. Dai*, P. He, and X. Zhang*, “Disposable sensors based on biodegradable polylactic acid piezoelectret films and their application in wearable electronics,” Sensors and Actuators: A. Physical, vol. 346, no. 113834, 2022.
13. X. Ma, X. Zhang*, and P. Fang*, “Flexible Film-Transducers Based on Polypropylene Piezoelectrets: Fabrication, Properties, and Applications in Wearable Devices,” Sensors and Actuators A: Physical, vol. 256, pp. 35-42, 2017.
14. X. Ma, X. Yang, C. Ding, X. Zhang*, Y. Dai*, and P. He, “Theoretical analysis and experimental validation of frequency-moldable electrostatic energy harvesters biased with a high elastic electret film,” Smart Materials and Structures, vol. 30, no. 6, pp. 065021, 2021.
15. X. Ma, H. von Seggern, G. M. Sessler*, S. Zhukov, O. Ben Dali, M. Kupnik, and X. Zhang*, “High performance fluorinated polyethylene propylene ferroelectrets with an air-filled parallel-tunnel structure,” Smart Materials and Structures, vol. 30, no. 1, pp. 015002, 2021.
16. X. Ma and X. Zhang*, “Low cost electrostatic vibration energy harvesters based on negatively-charged polypropylene cellular films with a folded structure,” Smart Materials and Structures, vol. 26, no. 8, pp. 085001, 2017.
17. L. Zhou, F. Zhang, X. Ma*, and X. Zhang*, “Influence of soft x-ray and ultraviolet irradiations on sensitivity of sensors made with piezoelectret films,” Journal of Physics D: Applied Physics, vol. 56, no. 435304, 2023.
18. X. Ma, X. Yang, H. von Seggern, Y. Dai*, P. He, G. M. Sessler, and X. Zhang*, “Tuneable resonance frequency vibrational energy harvester with electret-embedded variable capacitor,” IET Nanodielectrics, vol. 12, pp. 1-10, 2021.
19. X. Yang#, X. Ma#, C. Ding, G. M. Sessler, H. von Seggern, M. Kupnik, Y. Dai*, P. He*, X. Zhang*, “Resilient Electret Film Based Vibrational Energy Harvesters with a V-shaped Counter Electrode,” IET Nanodielectrics, pp. 1-10, 2022.
20. X. Ma*, F. Zhang, X. Zhang, G. Li, and P. Fang, “Compound electret-system with improved hydrophobicity and charge stability,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 27, no. 5, pp. 1433-1439, 2020.
21. C. Song, X. Ma, J. Zhao, J. Zhang, F. Yang, Y. Pan*, X. Zhang*, “Broadband Sound Absorption and Energy Harvesting by a Graded Array of Helmholtz Resonators,” IEEE Transactions on Dielectrics and Electrical Insulation, pp. 1-1, 2022.
22. A. A. Gulyakova, M. F. Galikhanov, X. Ma, X. Zhang, P. Fang*, “The Peculiarities of Electret Effect in Corona Electrets Based on Nonpolar and Polar Polymers with Dispersed Montmorillonite,” IEEE Transactions on Dielectrics and Electrical Insulation, pp. 1-1, 2022.
23. P. Fang, X. Ma, X. Li, X. Qiu, R. Gerhard, X. Zhang*, and G. Li*, “Fabrication, structure characterization, and performance testing of piezoelectret-film sensors for recording body motion,” IEEE Sensors Journal, vol. 18, no. 1, pp. 401-412, 2018.
24. X. Ma, X. Zhang*, G. M. Sessler*, L. Chen, X. Yang, Y. Dai, and P. He, “Energy harvesters based on fluorinated ethylene propylene unipolar ferroelectrets with negative charges,” AIP Advances, vol. 9, pp. 125334, 2019.
25. C. Song, J. Zhao*, X. Ma, M. Zhang, W. Yuan, F. Yang, Z. Wang, X. Zhang, and Y. Pan, “Multi-frequency sound energy harvesting using Helmholtz resonators with irradiated cross-linked polypropylene ferroelectret films,” AIP Advances, vol. 11, pp. 115002, 2021.
26. X. Li#, X. Ma#, L. Chang, J. Liu, J. Liao, and X. Zhang*, “Performance optimization of electret air filter,” Engineering Research Express, vol. 4, no. 035061, 2022.
27. X. Zhang*, G. M. Sessler, X. Ma, Y. Xue, and L. Wu, "Broad bandwidth vibration energy harvester based on thermally stable wavy fluorinated ethylene propylene electret films with negative charges," Journal of Micromechanics and Microengineering, vol. 28, no. 6, pp. 065012, 2018.
28. X. Zuo, L. Chen, W. Pan, X. Ma, T. Yang, and X. Zhang, “Fluorinated Polyethylene Propylene Ferroelectrets with an Air-Filled Concentric Tunnel Structure: Preparation, Characterization, and Application in Energy Harvesting,” Micromachines, vol. 11, pp. 1072, 2020.